Published in

American Institute of Physics, The Journal of Chemical Physics, 13(120), p. 6191

DOI: 10.1063/1.1642585

Links

Tools

Export citation

Search in Google Scholar

A rotational study of laser ablated thiourea

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A laser ablation device in combination with a molecular beam Fourier-transform microwave spectrometer has allowed the observation of the rotational spectrum of solid thiourea for the first time. The sensitivity reached in the experiment allowed the observation of the isotopomers (34)S, (13)C, and (15)N in their natural abundance. The spectrum of D(4)-thiourea was also analyzed from an enriched sample. The complicated hyperfine structure arising from the presence of two (14)N quadrupolar nuclei has been fully resolved and analyzed. The substitution r(s) structure has been derived from the experimental moments of inertia. Thiourea in gas phase presents a planar heavy atom skeleton. Experimental inertial defect values and high-level ab initio calculations reveal that the amino groups hydrogen atoms lie out-of-plane with a C(2) symmetry configuration and are involved in large amplitude inversion motions.