Published in

The Company of Biologists, Journal of Cell Science, 2014

DOI: 10.1242/jcs.148130

Links

Tools

Export citation

Search in Google Scholar

Loss of p27 upregulates MnSOD in a STAT3-dependent manner, disrupts intracellular redox activity and enhances cell migration

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Cell migration is a dynamic process that is central to a variety of physiological functions as well as disease pathogenesis. The modulation of cell migration by p27 has been reported, but the exact mechanism(s) whereby p27 intersects with downstream effectors that control cell migration have not been elucidated. By systematically comparing p27+/+ MEFs with genetically ablated p27−/− MEFs using wound healing, transwell and time-lapse microscopic analyses, we provide direct evidence demonstrating that p27 inhibits both directional and random cell migration. Identical results were obtained with normal and cancer epithelial cells using complementary knockdown and overexpression approaches. Additional studies revealed that overexpression of manganese superoxide dismutase (MnSOD) and reduced intracellular oxidation played a key role in increased cell migration in p27-deficient cells. Furthermore, we identified signal transducer and activator of transcription 3 (STAT3) as the transcription factor responsible for p27-regulated MnSOD expression which was further mediated by ERKs/ATF1-dependent transactivation of CRE within the stat3 promoter. Collectively, our data strongly indicate that p27 plays a crucially negative role in cell migration by inhibiting MnSOD expression in a STAT-3 dependent manner.