Published in

Royal Society of Chemistry, RSC Advances, 95(5), p. 77739-77745, 2015

DOI: 10.1039/c5ra11399g

Links

Tools

Export citation

Search in Google Scholar

Causal inference methods to assist in mechanistic interpretation of classification nano-SAR models

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The knowledge about the toxicity of nanomaterials and factors responsible for such phenomena are important tasks necessary for efficient human health protection and safety risk estimation associated with nanotechnology. In this study, the causation inference method within structure-activity relationship modeling for nanomaterials was introduced to elucidate underlying structure of the nanotoxicity data. As case studies the structure-activity relationships for toxicity of metal oxide nanoparticles (nano-SARs) towards BEAS-2B and RAW 264.7 cell lines were established. To describe the nanoparticles, the simple geometric, fragmental and “liquid drop model” based descriptors that represent the nanoparticles’ structure and characteristics were applied. The developed classification nano-SAR models were validated to confirm reliability of predicting toxicity for all studied metal oxide nanoparticles. Developed models suggest different mechanisms of nanotoxicity for the two types of cells.