Published in

Wiley, Journal of Leukocyte Biology, 6(77), p. 944-947, 2005

DOI: 10.1189/jlb.0205090

Links

Tools

Export citation

Search in Google Scholar

IRF-4 expression in the human myeloid lineage: Up-regulation during dendritic cell differentiation and inhibition by 1α,25-dihydroxyvitamin D3

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Interferon (IFN) regulatory factor (IRF)-4 is a lymphoid- and myeloid-restricted transcription factor of the IRF family. We analyzed its expression during differentiation of human monocytes along the macrophage or the dendritic cell (DC) pathway and in blood myeloid and plasmacytoid DC (M-DC and P-DC, respectively) subsets. Monocyte differentiation into DC, driven by granulocyte macrophage-colony stimulating factor (GM-CSF)/interleukin-4 or GM-CSF/IFN-beta, resulted in a strong up-regulation of IRF-4 mRNA and protein, which was further increased by lipopolysaccharide. It is interesting that 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], a potent inhibitor of DC differentiation, completely abolished IRF-4 up-regulation. IRF-4 was also detected in blood P-DC and M-DC. However, up-regulation upon in vitro culture and down-regulation by 1,25(OH)(2)D(3) was observed in M-DC but not in P-DC. These results point to IRF-4 as a potential player in human myeloid DC differentiation and as a novel target for the immunomodulatory activity of 1,25(OH)(2)D(3).