Published in

American Institute of Physics, Applied Physics Letters, 4(104), p. 041112

DOI: 10.1063/1.4863671

Links

Tools

Export citation

Search in Google Scholar

Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

To monitor the density of photo-generated charge carriers on a semiconductor surface, we demonstrate a detectorless imaging system based on the analysis of the optical feedback in terahertz quantum cascade lasers. Photo-excited free electron carriers are created in high resistivity n-type silicon wafers via low power (≅40 mW/cm2) continuous wave pump laser in the near infrared spectral range. A spatial light modulator allows to directly reconfigure and control the photo-patterned intensity and the associated free-carrier density distribution. The experimental results are in good agreement with the numerical simulations.