Published in

Oxford University Press, FEMS Microbiology Letters, 1(354), p. 69-74, 2014

DOI: 10.1111/1574-6968.12432

Links

Tools

Export citation

Search in Google Scholar

Isolation and characterization of an obligately chemolithoautotrophicHalothiobacillusstrain capable of growth on thiocyanate as an energy source

Journal article published in 2014 by Dimitry Y. Sorokin, Ben Abbas, Erik van Zessen, Gerard Muyzer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular and microbiological analysis of a laboratory bioreactor biomass oxidizing thiocyanate at autotrophic conditions and at 1 M NaCl showed a domination of a single chemolithoautotrophic sulfur-oxidizing bacterium (SOB) capable of using thiocyanate as an energy source. The bacterium was isolated in pure cultures and identified as a member of the Halothiobacillus halophilus/hydrothermalis clade. This clade includes moderately halophilic chemolithoautotrophic SOB from marine and hypersaline habitats for which the ability to utilize thiocyanate as an electron donor has not been previously demonstrated. Halothiobacillus sp. strain SCN-R1 grew with thiocyanate as the sole energy and nitrogen source oxidizing it to sulfate and ammonium via the cyanate pathway. The pH range for thiocyanate oxidation was within a neutral region between 7 and 8 and the range of salinity was from 0.2 to 1.5 M NaCl, with an optimum at 0.5 M. Despite the close phylogenetic relatedness, none of the tested type strains and other isolates from the H. halophilus/hydrothermalis group exhibited thiocyanate-oxidizing capacity. This article is protected by copyright. All rights reserved.