Oxford University Press (OUP), Tree Physiology, 15(23), p. 1061-1068
DOI: 10.1093/treephys/23.15.1061
Full text: Download
Nitrogen (N) storage capacity of cherry (Prunus avium L.) trees grown in sand culture was preconditioned by applying contrasting N supplies for one year. During the spring of the following year, a constant amount of 15N was supplied and the dynamics of N remobilization and root uptake were characterized as a function of internal N status of the trees. To calculate the flux of N through xylem, both xylem sap N concentration and whole-tree transpiration rates were measured. By comparing the cumulative flux of N through the xylem with the amount of N recovered in the new above ground growth, we indirectly evaluated the recycling of N in the xylem, i.e., the amount of N derived from shoot-root translocation that was subsequently reloaded into the xylem. The contrasting N storage capacities imposed during the first year affected both N remobilization and uptake from roots in the following year. Recycling of N in the xylem apparently did not occur during the remobilization of internal reserves (i.e., during the first 6-8 weeks after bud burst). However, when remobilization declined, measurement of the cumulative flux of N through the xylem overestimated the amount of N recovered in the new biomass, allowing the extent of N recycling to be evaluated. The amount of N recycling in the xylem was greater in high-N trees, which also took up less N through their roots than trees preconditioned to have a lower internal N status. This suggests that recycling of N in the xylem is a mechanism by which plants regulate N uptake by roots.