Published in

EDP Open, Oil and Gas Science and Technology, 5(70), p. 891-902, 2015

DOI: 10.2516/ogst/2014062

Links

Tools

Export citation

Search in Google Scholar

Simultaneous Production of CH4and H2from Photocatalytic Reforming of Glucose Aqueous Solution on Sulfated Pd-TiO2Catalysts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this work, the simultaneous production of CH4 and H2 from photocatalytic reforming of glucose aqueous solution on Pd-TiO2 catalysts under UV light irradiation by Light-Emitting Diodes (LED) was investigated. The Pd-TiO2 catalysts were prepared by the photodeposition method. The Pd content was in the range 0.5-2 wt% and a photodeposition time in the range 15-120 min was used. Pd-TiO2 powders were extensively characterized by X-Ray Diffraction (XRD), SBET, X-Ray Fluorescence spectrometry (XRF), UV-Vis Diffuse Reflectance Spectra (UV-Vis DRS), TEM and X-Ray Photoelectron Spectroscopy (XPS). It was found that the lower Pd loading (0.5 wt%) and 120 min of photodeposition time allowed us to obtain homogeneously distributed metal nanoparticles of small size; it was also observed that the increase in the metal loading and deposition time led to increasing the Pd0 species effectively deposited on the sulfated TiO2 surface. Particle size and the oxidation state of the palladium were the main factors influencing the photocatalytic activity and selectivity. The presence ofpalladium on the sulfated titania surface enhanced the H2 and CH4 production. In fact, on the catalyst with 0.5 wt% Pd loading and 120 min of photodeposition time, H2 production of about 26 jimol was obtained after 3 h of irradiation time, higher than that obtained with titania without Pd (about 8.5 jimol). The same result was obtained for the methane production. The initial pH ofthe solution strongly affected the selectivity ofthe system. In more acidic conditions, the production of H2 was enhanced, while the CH4 formation was higher under alkaline conditions.