Published in

American Chemical Society, Langmuir, 6(30), p. 1650-1658, 2014

DOI: 10.1021/la403435v

Links

Tools

Export citation

Search in Google Scholar

Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum dot based thermometry, in combination with double beam confocal microscopy, was used to investigate the absorption/heating efficiency of gold nanoparticles with different morphologies (nanorods, nanocages, nanoshells, and nanostars), all of them with an intense localized surface plasmon resonance within the first biological window, at around 808 nm. The heating efficiency was found to be strongly dependent on the geometry of the nanostructure, with the largest values found for gold nanorods and long-edge gold nanostars, both of them with heating efficiencies close to 100%. Gold nanorods and nanocages were found to have the largest absorption cross section per unit mass among all the studied geometries, emerging as optimum photothermal agents with minimum metal loading for biosystems.