Published in

Humana Press, Methods in Molecular Biology, p. 57-69, 2009

DOI: 10.1007/978-1-59745-396-7_5

Links

Tools

Export citation

Search in Google Scholar

Detection of activated Rab7 GTPase with an immobilized RILP probe

Journal article published in 2009 by Jim Sun ORCID, Ala-Eddine Deghmane, Cecilia Bucci, Zakaria Hmama
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dynamic and coordinated exchange of multiple GTPases between the cytosol and the phagosome membrane represents a critical process during phagosome biogenesis. In particular, acquisition of Rab7 is crucial for progression to the stage where formation of phagolysosomes is observed. Optimal Rab7 effector function requires its conversion to the GTP-bound form where it becomes activated. In light of this regulatory node, the GDP/GTP switch on the Rab7 molecule represents a tractable event to dissect the control of phagosome maturation by intracellular pathogen or their products. Direct measurement of Rab7 activation requires 32P-GTP binding to renatured Rab7 recovered by pull downs and resolved by SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and autoradiography. Here, we describe a novel, alternative, nonradioactive assay to measure Rab7 activity which takes advantage of the specific binding of activated (GTP bound) Rab7 to its effector RILP (Rab7 interacting lysosomal protein). Active Rab7 bound to immobilized recombinant RILP on latex beads can be detected quantitatively by either classical Western blotting or flow cytometry.