Published in

Sage Publications., Journal of Endotoxin Research, 4(11), p. 220-224

DOI: 10.1177/09680519050110040601

Sage Publications., Journal of Endotoxin Research, 4(11), p. 220-224

DOI: 10.1179/096805105x37367

Links

Tools

Export citation

Search in Google Scholar

Heritable defects of the human TLR signalling pathways

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Recently, three human primary immunodeficiencies associated with impaired TLR signalling were described. Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), either X-linked recessive or autosomal dominant, is caused by hypomorphic mutations in NEMO or hypermorphic mutation in IKBA, respectively, both involved in nuclear factor-kappaB (NF-kappaB) activation. These patients present with abnormal development of ectoderm-derived structures and suffer from a broad spectrum of infectious diseases. In vitro studies of the patients' cells showed an impaired, but not abolished, NF-kappaB activation in response to a large set of stimuli, including TLR agonists. More recently, patients with autosomal recessive amorphic mutations in IRAK4 have been reported, presenting no developmental defect and a more restricted spectrum of infectious diseases, mostly caused by pyogenic encapsulated bacteria, principally, but not exclusively Gram-positive. In vitro studies carried out with these patients' cells showed a specific impairment of the Toll-interleukin-1 receptor (TIR)-interleukin-1 receptor associated kinase (IRAK) signalling pathway. NF-kappaB- and mitogen activated protein kinase (MAPK) pathways are impaired in response to all TIR agonists tested. These data, therefore, suggest that TLRs play a critical role in host defence against pyogenic bacteria, but may be dispensable or redundant for immunity to most other infectious agents in humans.