Published in

International Union of Crystallography, Acta Crystallographica Section D: Biological Crystallography, 3(70), p. 841-850

DOI: 10.1107/s139900471303366x

International Union of Crystallography, Acta Crystallographica Section D: Biological Crystallography, 11(70), p. 3087-3087

DOI: 10.1107/s1399004714022597

Links

Tools

Export citation

Search in Google Scholar

Structures of SAICAR synthetase (PurC) fromStreptococcus pneumoniaewith ADP, Mg<sup>2+</sup>, AIR and Asp. Corrigendum

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Streptococcus pneumoniaeis a multidrug-resistant pathogen that is a target of considerable interest for antibacterial drug development. One strategy for drug discovery is to inhibit an essential metabolic enzyme. The seventh step of thede novopurine-biosynthesis pathway converts carboxyaminoimidazoleribonucleotide (CAIR) and L-aspartic acid (Asp) to 4-(N-succino)-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR) in the presence of adenosine 5′-triphosphate (ATP) using the enzyme PurC. PurC has been shown to be conditionally essential for bacterial replication. Two crystal structures of this essential enzyme fromStreptococcus pneumoniae(spPurC) in the presence of adenosine 5′-diphosphate (ADP), Mg2+, aminoimidazoleribonucleotide (AIR) and/or Asp have been obtained. This is the first structural study ofspPurC, as well as the first of PurC from any species with Asp in the active site. Based on these findings, two model structures are proposed for the active site with all of the essential ligands (ATP, Mg2+, Asp and CAIR) present, and a relay mechanism for the formation of the product SAICAR is suggested.