Published in

Elsevier, Renewable Energy, (89), p. 135-143, 2016

DOI: 10.1016/j.renene.2015.12.019

Links

Tools

Export citation

Search in Google Scholar

Evaluation of biorefinery configurations through a dynamic model-based platform: Integrated operation for bioethanol and xylitol co-production from lignocellulose

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study presents a feasibility analysis of simultaneous bioethanol and xylitol production from lignocellulosic materials. In addition with the in situ power generation analysis employing the residual solids not converted in the process. This work is an extension of the Dynamic Lignocellulosic Bioethanol 1.0 modelling platform (Morales-Rodriguez et al., Bioresour Technol 2011; 102: 1174e84) in four process configurations that included operation in both continuous and continuous with recycling of unconverted materials. The benchmarking criteria employed was the potential profit of combined bioethanol and xylitol products. The best process configuration was simultaneous saccharification and co-fermentation in continuous with recycling and continuous production of xylitol with 11.4% higher for combined production of bioethanol and xylitol compared with the selected base case (simultaneous saccharification and continuous co-fermentation). Besides, integrating the energy generation using the remaining solid materials and energy balance, allowed to determine that the energy necessary for the production process configurations could be generated with the residues from each configuration. The energy produced from solid material combustion was in the range of 1.9 and 2.2 times higher than the energy needed for each configuration. The potential depleted carbon dioxide from crude oil for energy production was up to 32,194 kg/h.