Published in

American Society for Microbiology, Applied and Environmental Microbiology, 13(80), p. 3895-3907, 2014

DOI: 10.1128/aem.00473-14

Links

Tools

Export citation

Search in Google Scholar

Insights into the Microbial Degradation of Rubber and Gutta-Percha by Analysis of the Complete Genome of Nocardia nova SH22a

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The complete genome sequence of Nocardia nova SH22a was determined in light of the remarkable ability of rubber and gutta-percha (GP) degradation of this strain. The genome consists of a circular chromosome of 8,348,532 bp with a G+C content of 67.77% and 7,583 predicted protein-encoding genes. Functions were assigned to 72.45% of the coding sequences. Among them, a large number of genes probably involved in the metabolism of xenobiotics and hardly degradable compounds, as well as genes that participate in the synthesis of polyketide- and/or nonribosomal peptide-type secondary metabolites, were detected. Based on in silico analyses and experimental studies, such as transposon mutagenesis and directed gene deletion studies, the pathways of rubber and GP degradation were proposed and the relationship between both pathways was unraveled. The genes involved include, inter alia , genes participating in cell envelope synthesis (long-chain-fatty-acid–AMP ligase and arabinofuranosyltransferase), β-oxidation (α-methylacyl-coenzyme A [α-methylacyl-CoA] racemase), propionate catabolism (acyl-CoA carboxylase), gluconeogenesis (phosphoenolpyruvate carboxykinase), and transmembrane substrate uptake (Mce [mammalian cell entry] transporter). This study not only improves our insights into the mechanism of microbial degradation of rubber and GP but also expands our knowledge of the genus Nocardia regarding metabolic diversity.