Published in

Wiley, FEBS Letters, 1-3(539), p. 7-13, 2003

DOI: 10.1016/s0014-5793(03)00125-x

Links

Tools

Export citation

Search in Google Scholar

BTK-2, a new inhibitor of the Kv1.1 potassium channel purified from Indian scorpionButhus tamulus

Journal article published in 2003 by Ritu Dhawan, Anurag Varshney, M. K. Mathew ORCID, Anil K. Lala
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da. It was found to block the human potassium channel hKv1.1 (IC(50)=4.6 microM). BTK-2 shows 40-70% sequence similarity to the family of the short-chain toxins that specifically block potassium channels. Multiple sequence alignment helps to categorize the toxin in the ninth subfamily of the K+ channel blockers. The modeled structure of BTK-2 shows an alpha/beta scaffold similar to those of the other short scorpion toxins. Comparative analysis of the structure with those of the other toxins helps to identify the possible structure-function relationship that leads to the difference in the specificity of BTK-2 from that of the other scorpion toxins. The toxin can also be used to study the assembly of the hKv1.1 channel.