Published in

IOP Publishing, New Journal of Physics, 4(15), p. 043032, 2013

DOI: 10.1088/1367-2630/15/4/043032

Links

Tools

Export citation

Search in Google Scholar

Quantum criticality at high temperature revealed by spin echo

Journal article published in 2013 by Shao-Wen Chen, Zhan-Feng Jiang, Ren-Bao Liu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quantum criticality occurs when the ground state of a macroscopic quantum system changes abruptly on tuning system parameters. It is an important indicator of new quantum matters emerging. In conventional methods, quantum criticality is observable only at zero or low temperature (as compared with the interaction strength in the system). We find that a quantum probe, if its coherence time is long, can detect the quantum criticality of a system at high temperature. In particular, the echo control over a spin probe can remove the thermal fluctuation effects and hence reveal the critical quantum fluctuation without requiring low temperature. We first use the exact solution of the one-dimensional transverse-field Ising model to demonstrate the possibility of detecting the quantum criticality at high temperature by spin echo. The critical behaviors were calculated using the exact solution and understood by the noise spectrum analysis in the Gaussian noise approximation. By numerical simulation, we further verify that the high-temperature quantum criticality also exists in the probe coherence measurement of spin systems with dipolar couplings. Using the noise spectrum analysis, we establish the correspondence between the necessary low temperature (TQC) in conventional methods and the necessary long coherence time (tQC) in probe decoherence measurement to observe the quantum criticality, that is, TQC ~ 1/tQC and much less than the interaction strength of the system. For example, probes with quantum coherence times of milliseconds or seconds can be used to study, without cooling the system, quantum criticality that was previously known to be only observable at extremely low temperatures of nano- or pico-kelvin. This finding provides a new possibility to study quantum matters.