Published in

IOP Publishing, Journal of Physics: Condensed Matter, 41(22), p. 415501

DOI: 10.1088/0953-8984/22/41/415501

Links

Tools

Export citation

Search in Google Scholar

First principles study of lithium insertion in bulk silicon

Journal article published in 2010 by Wenhui Wan, Qianfan Zhang ORCID, Yi Cui, Enge Wang
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (T(d)) site. The diffusion of a Li atom in the Si lattice is through a T(d)-Hex-T(d) trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a Li(x)Si alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration.