Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 4(88), 2013

DOI: 10.1103/physreve.88.043010

Links

Tools

Export citation

Search in Google Scholar

Interfacial velocities and capillary pressure gradients during Haines jumps

Journal article published in 2013 by Ryan T. Armstrong, Steffen Berg ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Drainage is typically understood as a process where the pore space is invaded by a nonwetting phase pore-by-pore, the controlling parameters of which are represented by capillary number and mobility ratio. However, what is less understood and where experimental data are lacking is direct knowledge of the dynamics of pore drainage and the associated intrinsic time scales since the rate dependencies often observed with displacement processes are potentially dependent on these time scales. Herein, we study pore drainage events with a high speed camera in a micromodel system and analyze the dependency of interfacial velocity on bulk flow rate and spatial fluid configurations. We find that pore drainage events are cooperative, meaning that capillary pressure differences which extend over multiple pores directly affect fluid topology and menisci dynamics. Results suggest that not only viscous forces but also capillarity acts in a nonlocal way. Lastly, the existence of a pore morphological parameter where pore drainage transitions from capillary to inertial and/or viscous dominated is discussed followed by a discussion on capillary dispersion and time scale dependencies. We show that the displacement front is disperse when volumetric flow rate is less than the intrinsic time scale for a pore drainage event and becomes sharp when the flow rate is greater than the intrinsic time scale (i.e., overruns the pore drainage event), which clearly shows how pore-scale parameters influence macroscale flow behavior.