Dissemin is shutting down on January 1st, 2025

Published in

American Society for Microbiology, Clinical and Vaccine Immunology, 5(18), p. 697-706, 2011

DOI: 10.1128/cvi.00013-11

Links

Tools

Export citation

Search in Google Scholar

Comprehensive serological analysis of two successive heterologous vaccines against H5N1 avian influenza virus in exotic birds in zoos.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTIn 2005, European Commission directive 2005/744/EC allowed controlled vaccination against avian influenza (AI) virus of valuable avian species housed in zoos. In 2006, 15 Spanish zoos and wildlife centers began a vaccination program with a commercial inactivated H5N9 vaccine. Between November 2007 and May 2008, birds from 10 of these centers were vaccinated again with a commercial inactivated H5N3 vaccine. During these campaigns, pre- and postvaccination samples from different bird orders were taken to study the response against AI virus H5 vaccines. Sera prior to vaccinations with both vaccines were examined for the presence of total antibodies against influenza A nucleoprotein (NP) by a commercial competitive enzyme-linked immunosorbent assay (cELISA). Humoral responses to vaccination were evaluated using a hemagglutination inhibition (HI) assay. In some taxonomic orders, both vaccines elicited comparatively high titers of HI antibodies against H5. Interestingly, some orders, such as Psittaciformes, which did not develop HI antibodies to either vaccine formulation when used alone, triggered notable HI antibody production, albeit in low HI titers, when primed with H5N9 and during subsequent boosting with the H5N3 vaccine. Vaccination with successive heterologous vaccines may represent the best alternative to widely protect valuable and/or endangered bird species against highly pathogenic AI virus infection.