Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, The Journal of Physical Chemistry A, 42(119), p. 10527-10539, 2015

DOI: 10.1021/acs.jpca.5b07071

Links

Tools

Export citation

Search in Google Scholar

Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e. enthalpies of formation (Hf°298), standard entropies (S°298) and heat capacities (Cp°(T)) were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method which was found the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S and F atoms. These data were used to propose 83 original groups, used in the semi-empirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest.