Published in

Elsevier, Solar Energy, 2(54), p. 105-114

DOI: 10.1016/0038-092x(94)00115-t

Links

Tools

Export citation

Search in Google Scholar

On Shadowband correction methods for diffuse irradiance measurements

Journal article published in 1995 by F. J. Batlles, F. J. Olmo, L. Alados Arboledas ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Diffuse irradiance, Gd, is an important variable in solar resource assessment. The diffuse irradiance can be worked out from global, G, and direct, Gb, irradiance measurements, but this method involves the use of relatively expensive tracking mechanisms. Alternatively, a widely accepted technique uses a pyranometer with a shadowband. Because the shadowband screens the sensor from part of the diffuse radiation coming in from the sky, a correction must be made to the measurements. However, because of the anisotropy of diffuse radiation it is difficult to compute an exact theoretical correction. In this study we use two data sets registered in two locations in Spain. The first one consists in coincident hourly values of global, direct, and diffuse irradiance; the latter by means of shadowband. The other data set includes the same variables but as 5-minute values. Our goal is to study the necessary correction factor for diffuse irradiance measurements obtained by means of shadowband. After testing several well-known correction methods, we have developed two different correction models, using two-thirds of the hourly data set, while the remaining one-third and the whole 5-minute data set have been used for validation purposes. The last validation test suggests that our anisotropic models provide reliable corrections for conditions different than the ones where they have been developed. The results obtained by the developed models show a negligible mean bias deviation. Approximately 55% of cases present deviations lower than 5% over the mean value of diffuse irradiance.