Published in

Cold Spring Harbor Laboratory Press, Genes & Development, 10(6), p. 1843-1856, 1992

DOI: 10.1101/gad.6.10.1843

Links

Tools

Export citation

Search in Google Scholar

Parental imprinting: Potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (IGF2) gene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The mouse insulin-like growth factor II (Igf2) gene, which is located on distal chromosome 7 (Chr7), has been shown previously to undergo tissue-specific parental imprinting. This imprinting results in expression of Igf2 from the paternally inherited chromosome and repression of the maternally inherited allele in most tissues of the developing embryo. We are using embryos with the maternal duplication and paternal deficiency of distal Chr7 to characterize the mechanism that underlies repression of the maternal allele. We show that the chromatin of the 5' region of the repressed Igf2 allele is potentially active for transcription rather than heterochromatic. In particular, a CpG island that comprises one of the two strong promoters is unmethylated at both parental alleles, and DNase I hypersensitive sites in and around the strong promoters are consistently present on both parental chromosomes. In agreement with the chromatin state, primary transcripts from the maternal Igf2 allele have been detected at low but significant levels. These findings differ from observations in other instances of imprinting, namely, X-chromosome inactivation and transgene imprinting in mice. Although no parent-specific differences were detected in either DNA methylation or sensitivity to nucleases at these promoters, we have observed parental methylation differences in a region several kilobases upstream of the first exon. The differential activity of the parental Igf2 alleles could be achieved through epigenetic modifications situated outside the promoters or by subtle and yet unidentified modifications at the promoters.