Published in

Wiley, Molecular Ecology, (19), p. 228-239, 2010

DOI: 10.1111/j.1365-294x.2009.04490.x

Links

Tools

Export citation

Search in Google Scholar

Genome‐wide analysis of alternative splicing evolution among Mus subspecies

Journal article published in 2010 by Bettina Harr, Leslie M. Turner ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Alternative splicing, the combination of different exons to produce a variety of transcripts from a single gene, contributes enormously to transcriptome diversity in mammals, and the majority of genes encode alternatively spliced products. Previous research comparing mouse, rat and human has shown that a significant proportion of splice forms are not conserved across species, suggesting that alternative transcripts are an important source of evolutionary novelty. Here, we studied the evolution of alternative splicing in the early stages of species divergence in the house mouse. We sequenced the testis transcriptomes of three Mus musculus subspecies and Mus spretus using Illumina technology. On the basis of a genome-wide analysis of read coverage differences among subspecies, we identified several hundred candidate alternatively spliced regions. We conservatively estimate that 6.5% of testis-expressed genes show alternative splice differences between at least one pair of M. musculus subspecies, a proportion slightly higher than the proportion of genes differentially expressed among subspecies. These results suggest that differences in both the structure and abundance of transcripts contribute to early transcriptome divergence.