Dissemin is shutting down on January 1st, 2025

Published in

Wiley, The Journal of Physiology, 22(593), p. 4995-5008, 2015

DOI: 10.1113/jp270941

Links

Tools

Export citation

Search in Google Scholar

Sleep spindles and human cortical nociception: A surface and intracerebral electrophysiological study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Responsiveness to environmental stimuli declines during sleep, and sleep spindles are often considered to play a major role in inhibiting sensory inputs. In the present study, we tested the effect of spindles on behavioural, autonomic and cortical responses to pain, in two experiments assessing surface and intracerebral responses to thermo-nociceptive laser stimuli during the all-night N2 sleep stage. The percentage of arousals remained unchanged as a result of the presence of spindles. Neither cortical nociceptive responses, nor autonomic cardiovascular reactivity were depressed when elicited within a spindle. These results could be replicated in human intracerebral recordings, where sleep spindle activity in the posterior thalamus failed to depress the thalamocortical nociceptive transmission, as measured by sensory responses within the posterior insula. Hence, the assumed inhibitory effect of spindles on sensory inputs may not apply to the nociceptive system, possibly as a result of the specificity of spinothalamic pathways and the crucial role of nociceptive information for homeostasis. Intriguingly, a late scalp response commonly considered to reflect high-order stimulus processing (the 'P3' potential) was significantly enhanced during spindling, suggesting a possible spindle-driven facilitation, rather than attenuation, of cortical nociception. Journal compilation