Published in

Instytut Podstaw Informatyki, Acta Physica Polonica A, 6(125), p. 1344-1347

DOI: 10.12693/aphyspola.125.1344

Links

Tools

Export citation

Search in Google Scholar

Thermoelectric Properties of Ca_3Co_4O_9-Based Ceramics Doped with Fe and/or Y

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We describe here structure and temperature dependences of conductivity σ(T), the Seebeck coefficient α(T), thermal conductivity λ(T) and figure-of-merit ZT(T) in Ca3Co4O9 ceramics, doped with Fe and Y, depending on compacting pressure (0.2 or 6 MPa) and temperature (300 < T < 700 K). It is shown that introduction of iron and yttrium to ceramics does not alter the crystalline structure of the material. Increasing the pressure in the compacting process before the additional diffusion annealing leads to a smaller-grained structure and increase σ and λ due to reducing of the synthesized samples porosity. The Seebeck coefficients of nanocomposite ceramics Ca3Co3.9Fe0.1O9 and (Ca2.9Y0.1)(Co3.9Fe0.1)O9 have linear dependences on temperature is not changed after increase of compacting pressure. Electrical-to-heat conductivity ratio (σ/λ) for the samples compacted at high (6 GPa) pressure increases not more than 20-30% in comparison with ones compacted at low (0.2 GPa) pressure, whereby ZT is increased more than 50%. The main reason for this effect is samples porosity reduction with the compacting pressure increase.