Published in

American Institute of Physics, Applied Physics Letters, 5(97), p. 052101

DOI: 10.1063/1.3475402

Links

Tools

Export citation

Search in Google Scholar

Control of interface abruptness of polar MgZnO/ZnO quantum wells grown by pulsed laser deposition

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A strong quantum confined Stark effect (QCSE) was observed in wedge shaped MgZnO/ZnO quantum wells (QWs) grown by pulsed laser deposition. A reduced laser fluence of 1.8 J/cm2 was used. Reference samples grown at higher standard fluence 2.4 J/cm2 showed only a negligible QCSE. Using off-axis deposition without substrate rotation, a constant composition of the barriers was maintained while varying the well width in a wedge shaped QW. A redshift of the QW luminescence with increasing QW thickness up to 230 meV below the ZnO emission was found, accompanied by an increase in the exciton lifetime from 0.3 ns up to 4.2 μs.