Published in

Wiley, AIChE Journal, 8(58), p. 2601-2616, 2012

DOI: 10.1002/aic.13863

Links

Tools

Export citation

Search in Google Scholar

Finite volume method for falling liquid films carrying monodisperse spheres in Newtonian regime

Journal article published in 2012 by Patricio Bohorquez ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A finite volume method is proposed to study the dynamics of unsteady, falling liquid films carrying monodisperse spheres in Newtonian regime under the action of gravity. The Navier–Stokes equations were rewritten to implement a numerical scheme with interface capturing capability, able to compute discontinuities in the solid volumetric concentration and free surface flows. The interface capturing property is checked with simple benchmarks, showing that experimental data for a vertical settler and the dynamics of the wetting front in a thin liquid film are reproduced with success. Also, the numerical scheme computes with accuracy Kapitza instability or viscous roll waves. This work concludes illustrating the applicability of the model to study viscous resuspension phenomenon in a unsteady, falling suspension film. © 2012 American Institute of Chemical Engineers AIChE J, 58: 2601–2616, 2012