Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 21(25), p. 3114-3121, 2015

DOI: 10.1002/adfm.201500628

Links

Tools

Export citation

Search in Google Scholar

Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stretchable conductive fibers have received significant attention due to their possibility of being utilized in wearable and foldable electronics. Here, highly stretchable conductive fiber composed of silver nanowires (AgNWs) and silver nanoparticles (AgNPs) embedded in a styrene–butadiene–styrene (SBS) elastomeric matrix is fabricated. An AgNW-embedded SBS fiber is fabricated by a simple wet spinning method. Then, the AgNPs are formed on both the surface and inner region of the AgNW-embedded fiber via repeated cycles of silver precursor absorption and reduction processes. The AgNW-embedded conductive fiber exhibits superior initial electrical conductivity (σ0 = 2450 S cm−1) and elongation at break (900% strain) due to the high weight percentage of the conductive fillers and the use of a highly stretchable SBS elastomer matrix. During the stretching, the embedded AgNWs act as conducting bridges between AgNPs, resulting in the preservation of electrical conductivity under high strain (the rate of conductivity degradation, σ/σ0 = 4.4% at 100% strain). The AgNW-embedded conductive fibers show the strain-sensing behavior with a broad range of applied tensile strain. The AgNW reinforced highly stretchable conductive fibers can be embedded into a smart glove for detecting sign language by integrating five composite fibers in the glove, which can successfully perceive human motions.