Dissemin is shutting down on January 1st, 2025

Published in

Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave

DOI: 10.1117/12.2055115

Links

Tools

Export citation

Search in Google Scholar

Preparing EChO space mission: Laboratory simulation of planetary atmospheres

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Space missions, as EChO, or ground based experiments, as SPHERE, have been proposed to measure the atmospheric transmission, reflection and emission spectra. In particular, EChO is foreseen to probe exoplanetary atmospheres over a wavelength range from 0.4 to 16 micron by measuring the combined spectra of the star, its transmission through the planet atmosphere and the emission of the planet. The planet atmosphere characteristics and possible biosignatures will be inferred by studying such composite spectrum in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3) etc. The interpretation of the future EChO observations depends upon the understanding of how the planet atmosphere affects the stellar spectrum and how this last affects the planet emission/absorption. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how those characteristics could be affected by radiation induced phenomena such as photochemical and biological one. Insights in this direction can be achieved from laboratory studies of simulated planetary atmosphere of different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission.