Published in

Springer Nature [academic journals on nature.com], Oncogene, 27(27), p. 3789-3796, 2008

DOI: 10.1038/onc.2008.7

Links

Tools

Export citation

Search in Google Scholar

Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation

Journal article published in 2008 by J. A. Costoya ORCID, Costoya Ja, R. M. Hobbs, P. P. Pandolfi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Acute promyelocytic leukemia is associated with chromosomal translocations that involve the RARalpha gene and several distinct loci producing a variety of fusion proteins. One such fusion partner is promyelocytic leukemia zinc-finger gene (PLZF), a member of the POK (POZ and Krüppel) family of transcriptional repressors that is a key developmental regulator, stem cell maintenance factor and tumor suppressor. Overexpression of PLZF has been shown to induce cell cycle arrest at the G(1) to S transition and repress the expression of key pro-proliferative genes such as CCNA2 and MYC. However, given this data suggesting an important growth inhibitory role for PLZF, relatively little is known regarding regulation of its activity. Here we show that the main cyclin-dependent kinase involved at the G(1) to S transition (CDK2) phosphorylates PLZF at two consensus sites found within PEST domains present in the hinge region of the protein. This phosphorylation triggers the ubiquitination and subsequent degradation of PLZF, which impairs PLZF transcriptional repression ability and antagonizes its growth inhibitory effects. This critical mechanism of PLZF regulation may thus be relevant for cell cycle progression during the development and the pathogenesis of human cancer.