Published in

Nature Research, Nature Cell Biology, 4(3), p. 384-391, 2001

DOI: 10.1038/35070067

Links

Tools

Export citation

Search in Google Scholar

Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly

Journal article published in 2001 by Jae Hong Seol, Anna Shevchenko, Andrej Shevchenko, Raymond J. Deshaies ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

SCF ubiquitin ligases are composed of Skp1, Cdc53, Hrt1 and one member of a large family of substrate receptors known as F-box proteins (FBPs). Here we report the identification, using sequential rounds of epitope tagging, affinity purification and mass spectrometry, of 16 Skp1 and Cdc53-associated proteins in budding yeast, including all components of SCF, 9 FBPs, Yjr033 (Rav1) and Ydr202 (Rav2). Rav1, Rav2 and Skp1 form a complex that we have named 'regulator of the (H+)-ATPase of the vacuolar and endosomal membranes' (RAVE), which associates with the V1 domain of the vacuolar membrane (H+)-ATPase (V-ATPase). V-ATPases are conserved throughout eukaryotes, and have been implicated in tumour metastasis and multidrug resistance, and here we show that RAVE promotes glucose-triggered assembly of the V-ATPase holoenzyme. Previous systematic genome-wide two-hybrid screens yielded 17 proteins that interact with Skp1 and Cdc53, only 3 of which overlap with those reported here. Thus, our results provide a distinct view of the interactions that link proteins into a comprehensive cellular network.