Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Molecular Cancer Research, 4(12), p. 571-582, 2014

DOI: 10.1158/1541-7786.mcr-13-0396

Links

Tools

Export citation

Search in Google Scholar

Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide. The increasing amount of genomic information on human tumors and cell lines provides more biologic data to design preclinical studies. We and others previously reported whole-exome sequencing data of 106 HNSCC primary tumors. In 2012, high-throughput genomic data and pharmacologic profiling of anticancer drugs of hundreds of cancer cell lines were reported. Here, we compared the genomic data of 39 HNSCC cell lines with the genomic findings in 106 HNSCC tumors. Amplification of eight genes (PIK3CA, EGFR, CCND2, KDM5A, ERBB2, PMS1, FGFR1, and WHSCIL1) and deletion of five genes (CDKN2A, SMAD4, NOTCH2, NRAS, and TRIM33) were found in both HNSCC cell lines and tumors. Seventeen genes were only mutated in HNSCC cell lines (>10%), suggesting that these mutations may arise through immortalization in tissue culture. Conversely, 11 genes were only mutated in >10% of human HNSCC tumors. Several mutant genes in the EGF receptor (EGFR) pathway are shared both in cell lines and in tumors. Pharmacologic profiling of eight anticancer agents in six HNSCC cell lines suggested that PIK3CA mutation may serve as a predictive biomarker for the drugs targeting the EGFR/PI3K pathway. These findings suggest that a correlation of gene mutations between HNSCC cell lines and human tumors may be used to guide the selection of preclinical models for translational research. Implications: These findings suggest that a correlation of gene mutations between HNSCC cell lines and human tumors may be used to guide the selection of preclinical models for translational research. Visual Overview: http://mcr.aacrjournals.org/content/12/4/571/F1.large.jpg. Mol Cancer Res; 12(4); 571–82. ©2014 AACR.