Published in

Elsevier, Chemical Physics Letters, 4-6(502), p. 225-230, 2011

DOI: 10.1016/j.cplett.2010.12.062

Links

Tools

Export citation

Search in Google Scholar

Efficient infiltration of low molecular weight polymer in nanoporous TiO2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The polymer APFO3 was prepared with different molecular weights to study how the infiltration into nanoporous TiO2 films of different thickness depends on the size of the polymer. Also two different sizes of TiO2 nanoparticles were investigated to understand the effect of different pore size. It was observed that the lowest molecular weight polymer dissolved in chlorobenzene could infiltrate the nanoporous TiO2 network up to several micrometer thick films. It was concluded that efficient polymer infiltration into thick nanoporous layers was possible for the polymers with an estimated average chain length smaller than the diameter of the nanoparticles.