Published in

Springer (part of Springer Nature), Biodiversity and Conservation, 3(17), p. 605-621

DOI: 10.1007/s10531-007-9285-0

Links

Tools

Export citation

Search in Google Scholar

Distribution of medium- to large-sized African mammals based on habitat suitability models

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The knowledge of the areas inhabited by a species within its distribution range and the connections among patches are critical pieces of information for successful conservation actions. The internal structure of the extent of occurrence (EO) of a species is almost always unknown, even for "well-known" flagship species. We developed a methodology to infer the area of occupancy (AO) within the EO of a species using the limited available data. We present here the results of a three years project funded by European Union to develop high-resolution models of habitat suitability for 281 medium- to large-sized African mammals across the whole continent. The existing literature was reviewed and all data on the geographic distribution and environmental preferences of the selected species were collected. For each species, these data were then expressed in terms of key variables available as GIS layers at a resolution of 1 km(2) over the entire African continent. The AO of each species was obtained merging the information on the ecological needs of the species and the values of ecological variables over the region identified as EO. The habitat suitability models were evaluated through direct field work in four countries (Morocco, Cameroon, Uganda, Botswana) chosen as representatives of the environmental and species diversity of Africa. More than 81% of models had positive true skill statistics (TSS) values, indicating models performing better than random. Rigorous modeling procedures supported by ad-hoc field evaluation allowed the production of high-resolution habitat suitability models useful for conservation applications.