Dissemin is shutting down on January 1st, 2025

Published in

Humana Press, Methods in Molecular Biology, p. 181-197

DOI: 10.1007/978-1-4939-1752-5_15

Links

Tools

Export citation

Search in Google Scholar

Scanning Fluorescence Correlation Spectroscopy on Biomembranes

Journal article published in 2014 by Eduard Hermann, Jonas Ries ORCID, Ana J. García Sáez
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fluorescence correlation spectroscopy (FCS) is a powerful quantitative method to study dynamical properties of biophysical systems. It exploits the temporal autocorrelation of fluorescence intensity fluctuations originating from a tiny volume (~fL). A theoretical model function can be then fitted to the measured auto-correlation curve to obtain physical parameters such as local concentration and diffusion time. However, the application of FCS on membranes is coupled to several difficulties like accurate positioning and stability of the set-up.In this book chapter, we explain the theoretical framework of point FCS and Scanning FCS (SFCS), which is a variation especially suitable for membrane studies. We present a list of materials necessary for SFCS studies on Giant Unilamellar Vesicles (GUVs). Finally, we provide simple protocols for the preparation of GUVs, calibration of the microscope setup, and acquisition and analysis of SFCS data to determine diffusion coefficients and concentrations of fluorescent particles embedded in lipid membranes.