Dissemin is shutting down on January 1st, 2025

Published in

Society of Photo-optical Instrumentation Engineers, Proceedings of SPIE, 2014

DOI: 10.1117/12.2042079

Links

Tools

Export citation

Search in Google Scholar

Dual plasmonic gold nanoparticles for multispectral photoacoustic imaging application

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nanoparticle contrast agents for molecular targeted imaging have widespread interest in diagnostic applications with cellular resolution, specificity and selectivity for visualization and assessment of various disease processes. Of particular interest is gold nanoparticle owing to its tunability of the surface plasmon resonance (SPR) and its relative inertness. Here we present the synthesis of anisotropic multi-branched star shaped gold nanoparticles exhibiting dual-band plasmon absorption peaks and its application as a contrast agent for multispectral photoacoustic imaging. The transverse plasmon absorption peak of the synthesised dual plasmonic gold nanostar (DPGNS) was around 700 nm and that of longitudinal plasmon absorption in the longer wavelength region around 1050-1150 nm. Unlike most reported PA contrast agent with surface plasmon absorption in the range of 700 to 800 nm showing moderate tissue penetration, 1050-1200 nm range lies in the farther region of the optical window of biological tissue where scattering and the intrinsic optical extinction of endogenous chromophores is at its minimum. We also present a proof of principle demonstration of DPGNS as contrast agent for multispectral photoacoustic animal imaging. Our results show that DPGNS are promising for PA imaging with extended-depth imaging applications.