Published in

Wiley, Cellular Microbiology, 0(0), p. 070917035030001-???, 2007

DOI: 10.1111/j.1462-5822.2007.01045.x

Links

Tools

Export citation

Search in Google Scholar

The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Treponema denticola major outer sheath protein (Msp) inhibits neutrophil chemotaxis in vitro, but key regulatory mechanisms have not been identified. Because the Rac small GTPases regulate directional migration in response to chemoattractants, the objective was to analyse the effects of Msp on formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil polarization and Rac activation in murine neutrophils. Msp pretreatment of neutrophils inhibited both polarization and chemotactic migration in response to fMLP. Activation of small GTPases was measured by p21 binding domain (PBD) pulldown assays, followed by Western analysis, using monoclonal anti-Rac1, anti-Rac2, anti-cdc42 and anti-RhoA antibodies. Enriched native Msp selectively inhibited fMLP-stimulated Rac1 activation in a concentration-dependent manner, but did not affect Rac2, cdc42 or RhoA activation. Murine neutrophils transfected with vectors expressing fluorescent probes PAK-PBD-YFP and PH-AKT-RFP were used to determine the effects of Msp on the localization of activated Rac and PI3 kinase products. Real-time confocal images showed that Msp inhibited the polarized accumulation of activated Rac and PI3-kinase products upon exposure to fMLP. The findings indicate that T. denticola Msp inhibition of neutrophil polarity may be due to the selective suppression of the Rac1 pathway.