Published in

Elsevier, Journal of Magnetic Resonance, 1(191), p. 7-15

DOI: 10.1016/j.jmr.2007.11.017

Links

Tools

Export citation

Search in Google Scholar

Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: Aromatic substituents

Journal article published in 2008 by Ulrich H. N. Dürr, Stephan L. Grage, Raiker Witter ORCID, Anne S. Ulrich
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Structural parameters of peptides and proteins in biomembranes can be directly measured by solid state NMR of selectively labeled amino acids. The 19F nucleus is a promising label to overcome the low sensitivity of 2H, 13C or 15N, and to serve as a background-free reporter group in biological compounds. To make the advantages of solid state 19F NMR fully available for structural studies of polypeptides, we have systematically measured the chemical shift anisotropies and relaxation properties of the most relevant aromatic and aliphatic 19F-labeled amino acids. In this first part of two consecutive contributions, six different 19F-substituents on representative aromatic side chains were characterized as polycrystalline powders by static and MAS experiments. The data are also compared with results on the same amino acids incorporated in synthetic peptides. The spectra show a wide variety of lineshapes, from which the principal values of the CSA tensors were extracted. In addition, temperature-dependent T(1) and T(2) relaxation times were determined by 19F NMR in the solid state, and isotropic chemical shifts and scalar couplings were obtained in solution.