Elsevier, Chaos, Solitons and Fractals, 2(12), p. 321-332
DOI: 10.1016/s0960-0779(00)00180-6
Full text: Download
In contrast to the single species models that were extensively studied in the 1970s and 1980s, predator–prey models give rise to long-period oscillations, and even systems with stable equilibria can display oscillatory transients with a regular frequency. Many fluctuating populations appear to be governed by such interactions. However, predator–prey models have been poorly studied with respect to the interaction of nonlinear dynamics, noise, and system identification. I use simulated data from a simple host–parasitoid model to investigate these issues. The addition of even a modest amount of noise to a stable equilibrium produces enough structured variation to allow reasonably accurate parameter estimation. Despite the fact that more-or-less regular cycles are generated by adding noise to any of the classes of deterministic attractor (stable equilibrium, periodic and quasiperiodic orbits, and chaos), the underlying dynamics can usually be distinguished, especially with the aid of the mechanistic model. However, many of the time series can also be fit quite well by a wrong model, and the fitted wrong model usually misidentifies the underlying attractor. Only the chaotic time series convincingly rejected the wrong model in favor of the true one. Thus chaotic population dynamics offer the best chance for successfully identifying underlying regulatory mechanisms and attractors.