Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Antennas and Propagation, 4(53), p. 1535-1541, 2005

DOI: 10.1109/tap.2005.844415

Links

Tools

Export citation

Search in Google Scholar

Finite difference time domain Simulation of the Earth-ionosphere resonant cavity: Schumann resonances

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a numerical approach to study the electrical properties of the Earth's atmosphere. The finite-difference time-domain (FDTD) technique is applied to model the Earth's atmosphere in order to determine Schumann resonant frequencies of the Earth. Three-dimensional spherical coordinates are employed and the conductivity profile of the atmosphere versus height is introduced. Periodic boundary conditions are implemented in order to exploit the symmetry in rotation of the Earth and decrease computational requirements dramatically. For the first time, very accurate FDTD results are obtained, not only for the fundamental mode but also for higher order modes of Schumann resonances. The proposed method constitutes a useful tool to obtain Schumann resonant frequencies, therefore to validate electrical models for the terrestrial atmosphere, or atmospheres of other celestial bodies.