Published in

Wiley, Advanced Functional Materials, 11(16), p. 1389-1399, 2006

DOI: 10.1002/adfm.200600256

Links

Tools

Export citation

Search in Google Scholar

Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Formation of cobalt sulfide hollow nanocrystals through amechanism similar to the Kirkendall Effect has been investigated indetail. It was found that performing the reaction at>120oC leads tofast formation of a single void ins ide each shell, whereas at roomtemperature multiple voids are formed within each shell, which can beattributed to strongly temperature-dependent diffusivities for vacancies.The void formation process is dominated by outward diffusion of cobaltcations; still, significant inward transport of sulfur anions can beinferred to occur as the final voids are smaller in diameter than theoriginal cobalt nanocrystals. Comparison of volume distributions forinitial and final nanostructures indicates excess apparent volume inshells implying significant porosity and/or a defective structure.Indirect evidence for shells to fracture during growth at lowertemperatures was observed in shell size statisticsand TEM of as-grownshells. An idealized model of the diffusional process imposes two minimalrequirements on material parameters for shell growth to be obtainablewithin a specific synthetic system.