Published in

Elsevier, Journal of Arid Environments, 2(75), p. 106-111, 2011

DOI: 10.1016/j.jaridenv.2010.09.019

Links

Tools

Export citation

Search in Google Scholar

Distribution of axis-splitting in Mojave Desert shrub species along an elevational gradient

Journal article published in 2010 by S. E. Lambert, C. S. Jones, H. J. Schenk ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

a b s t r a c t Although highly branched from the base, all shrubs have short main axes linking canopies to root systems. Main axes become increasingly segmented into independent canopy/stem/root segments as aridity increases across continents. The resulting hydraulic modularity has been proposed as an adaption to low soil moisture that prevents runaway embolism and minimizes risk of hydraulic failure. Here we test the hypotheses that (1) at a regional scale, the importance of axis-splitting species in communities declines with increasing elevation, as a proxy for precipitation, and (2) that this decline is explained by lower occurrence of low-elevation dominant species. We evaluated all species for axis splitting and determined importance values in plots along an elevational transect in the Mojave Desert. As predicted, as elevation increased, the total importance of axis-splitting species declined from 100% at low-elevation sites to 75% at the highest elevation site. However, this decline was not due solely to the decline of the lower elevation dominant species. At the high elevation site, the influx of new species resulted in a six-fold increase in species richness and almost all of the new high elevation woody eudicotyledonous species exhibited axis splitting; non-splitting species were represented by other growth forms.