Published in

American Chemical Society, Chemistry of Materials, 4(20), p. 1614-1621, 2008

DOI: 10.1021/cm702642e

Links

Tools

Export citation

Search in Google Scholar

Versatile Synthesis of Functional Gold Nanoparticles: Grafting Polymers From and Onto

Journal article published in 2008 by Peter J. Roth, Patrick Theato ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Functionalized gold nanoparticles have been prepared in an organic solvent by a two-phase reduction method in ethyl acetate and water using bis(6-hydroxyhexyl) disulfide bis(2-bromoisobutyl) ester, bis(6-acetyloxyhexyl) disulfide, and bis(5-carboxypentyl) disulfide bis(pentafluorophenyl) ester as stabilizing ligands. This procedure features the advantages that no phase transfer agent was necessary during the preparation of the gold nanoparticles and that the reducing conditions were mild enough to utilize functional disulfide ligands. The obtained gold nanoparticles with typical sizes between 2 and 5 nm could be precipitated and redispersed without any irreversible aggregation. Using these nanoparticles the stimuli-responsive polymers poly(N-isopropylacrylamide) and poly (N-cyclopropylacrylamide) could be grafted from the surface. Also, the grafting of polymers onto gold nanoparticles could be demonstrated with nanoparticles featuring pentafluorophenyl ester groups. The reactive character of gold nanoparticles featuring a pentafluorophenyl ester groups on the surface could also be applied in the preparation of multilayers on the basis of covalent bonds between the gold nanoparticles and polyallylamine.