Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Parasite Immunology, 1(36), p. 13-31, 2013

DOI: 10.1111/pim.12078

Links

Tools

Export citation

Search in Google Scholar

Neutrophils have a protective role during early stages of Leishmania amazonensis infection in BALB/c mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neutrophils are involved in early stages of immune responses to pathogens. Here, we investigated the role of neutrophils during the establishment of Leishmania amazonensis infection in BALB/c and C57BL/6 mice. First, we showed an accumulation of neutrophils between 6 and 24 hours post-infection, followed by a reduction in neutrophil numbers after 72 hours. Next, we depleted neutrophils prior to infection using RB6-8C5 or 1A8 mAb. Neutrophil depletion led to faster lesion development, increased parasite numbers and higher arginase activity during the first week of infection in BALB/c mice, but not in C57BL/6 mice. Increased susceptibility was accompanied by augmented levels of anti-L. amazonensis IgG and increased production of IL-10 and IL-17. Because IL-10 is a mediator of susceptibility to Leishmania infection, we blocked IL-10 signaling in neutrophil-depleted mice using anti-IL-10R. Interestingly, inhibition of IL-10 signaling abrogated the increase in parasite loads observed in neutrophil-depleted mice, suggesting that parasite proliferation is at least partially mediated by IL-10. Additionally, we tested the effect of IL-17 in inflammatory macrophages and observed that IL-17 increased arginase activity and favored parasite growth. Taken together, our data indicate that neutrophils control parasite numbers and limit lesion development during the first week of infection in BALB/c mice. This article is protected by copyright. All rights reserved.