Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 13(102), p. 133703

DOI: 10.1063/1.4801310

Links

Tools

Export citation

Search in Google Scholar

Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The structural identity of the biomineralized iron core nanoparticles in Helicobacter pylori ferritins (Hpf's) has been determined by employing soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism. Valence states of Fe ions are nearly trivalent in all Hpf's, indicating that the amount of magnetite (Fe3O4) is negligible. With increasing filling of Fe ions, the local configurations of Fe3+ ions change from the mixture of the tetrahedral and octahedral symmetries to the octahedral symmetry. These results demonstrate that the biomineralization of the ferritin core changes from maghemite-like (γ-Fe2O3) formation to hematite-like (α-Fe2O3) formation with increasing Fe content.