Published in

Institute of Electrical and Electronics Engineers, IEEE Journal of Selected Topics in Quantum Electronics, 4(15), p. 1226-1233, 2009

DOI: 10.1109/jstqe.2009.2015583

Links

Tools

Export citation

Search in Google Scholar

Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, InGaN/GaN nanorod LEDs with various sizes are fabricated using self-assembled Ni nanomasks and inductively coupled plasma-reactive ion etching. Photoluminescence (PL) characteristics exhibit size-dependent, wavelength blue shifts of the emission spectra from the nanorod LEDs. Numerical analyses using a valence force field model and a self-consistent Poisson, Schrodinger, and drift-diffusion solver quantitatively describe the correlation between the wavelength blue shifts and the strain relaxation of multiple quantum wells embedded in nanorods with different averaged sizes. Time-resolved PL studies confirm that the array with a smaller size exhibits a shorter carrier lifetime at low temperature, giving rise to a stronger PL intensity. However, the PL intensity deteriorates at room temperature, compared to that of a larger size, possibly due to an increased number of surface states, which decreases the nonradiative lifetime, and hence reduces the internal quantum efficiency.