Published in

American Chemical Society, ACS Applied Materials and Interfaces, 10(6), p. 7180-7188, 2014

DOI: 10.1021/am5003074

Links

Tools

Export citation

Search in Google Scholar

Fine Tuning of Lithographic Masks through Thin Films of PS-b-PMMA with Different Molar Mass by Rapid Thermal Processing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The self-assembly of asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer based nanoporous thin films over a broad range of molar mass (Mn) between 39k g∙mol-1 and 205k g∙mol-1 is obtained by means of a simple thermal treatment. In the case of standard thermal treatments, the self-assembly process of block copolymers is hindered at small Mn by thermodynamic limitations and by a large kinetic barrier at high Mn. We demonstrate that a fine tuning of the annealing parameters, performed by a rapid thermal processing (RTP) machine, permits to overcome those limitations. Cylindrical features are obtained by varying Mn and properly changing the corresponding annealing temperature, while keeping constant the annealing time (900 s), the film thickness (~ 30 nm), and the PS fraction (~ 0.7). The morphology, the characteristic dimensions (i.e. the pore diameter d and the pore-to-pore distance L0), and the order parameter (i.e. the lattice correlation length ξ) of the samples are analyzed by scanning electron microscopy and grazing-incidence small-angle x-ray scattering, obtaining values of d ranging between 12 and 30 nm and L0 ranging between 24 and 73 nm. The dependence of L0 as a 0.67 power law of the number of segments places these systems inside the strong segregation limit regime. The experimental results evidence the capability to tailor the self-assembly processes of BCPs over a wide range of molecular weights by a simple thermal process, fully compatible with the stringent constraints of lithographic applications and industrial manufacturing.