Published in

American Physical Society, Physical Review Letters, 12(98)

DOI: 10.1103/physrevlett.98.120503

Links

Tools

Export citation

Search in Google Scholar

Modeling an Adiabatic Quantum Computer via an Exact Map to a Gas of Particles

Journal article published in 2007 by A. M. Zagoskin, S. Savel'ev ORCID, Franco Nori
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We map adiabatic quantum evolution on the classical Hamiltonian dynamics of a 1D gas (Pechukas gas) and simulate the latter numerically. This approach turns out to be both insightful and numerically efficient, as seen from our example of a CNOT gate simulation. For a general class of Hamiltonians we show that the escape probability from the initial state scales no faster than |lambda|gamma, where |lambda| is the adiabaticity parameter. The scaling exponent for the escape probability is gamma=1/2 for all levels, except the edge (bottom and top) ones, where gamma approximately < 1/3. In principle, our method can solve arbitrarily large adiabatic quantum Hamiltonians.