Published in

Massachusetts Institute of Technology Press, Neural Computation, 8(10), p. 1987-2017, 1998

DOI: 10.1162/089976698300016945

Links

Tools

Export citation

Search in Google Scholar

Extracting Oscillations: Neuronal Coincidence Detection with Noisy Periodic Spike Input

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

How does a neuron vary its mean output firing rate if the input changes from random to oscillatory coherent but noisy activity? What are the critical parameters of the neuronal dynamics and input statistics? To answer these questions, we investigate the coincidence-detection properties of an integrate-and-fire neuron. We derive an expression indicating how coincidence detection depends on neuronal parameters. Specifically, we show how coincidence detection depends on the shape of the postsynaptic response function, the number of synapses, and the input statistics, and we demonstrate that there is an optimal threshold. Our considerations can be used to predict from neuronal parameters whether and to what extent a neuron can act as a coincidence detector and thus can convert a temporal code into a rate code.