Published in

Elsevier, BBA - Bioenergetics, 3(1857), p. 198-213, 2016

DOI: 10.1016/j.bbabio.2015.10.015

Links

Tools

Export citation

Search in Google Scholar

Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane

Journal article published in 2015 by Axel Magalon ORCID, François Alberge
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play : supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria.